

Onboard Carbon capture potential in shipping

Technical Seminar on Onboard Carbon Capture and Storage (OCCS) Systems, International Maritime Organization

Chara Georgopoulou
11 September 2025

Achieving net-zero emissions demands shipping transformation: access to carbon neutral fuels, uptake of zero to near-zero GHG emission technologies, improvement of energy efficiency, and adoption of innovative practices

Pieces of the decarbonization puzzle

To achieve IMO's ambitious decarbonization goals, combinations of options is foreseen

ONBOARD CARBON CAPTURE SYSTEMS ARE EXPECTED TO BE PART OF THE SOLUTION

Growing industry momentum on the topic

STAGE 1: Technology validation

Exploration of concepts; Technology R&D; Validation of primary safety and feasibility

STAGE 2: Ecosystem & framework development

Standards; business models; stakeholder; engagement in partnerships needed for deployment

STAGE 3: Commercial scaling

Development of supportive infrastructure; incentivization; policy and regulation adaptation; real-life performance verification

DNV

OCCS is technically feasible & proven, but wider adoption requires overcoming barriers

Technical perspective: Onboard implementation

OCCS can be a technically feasible decarbonization solution

Source: Energy efficiency measures and technologies. DNV Report 2025

OCC methods by technology, energy converter and fuel

CCS CAPEX cost estimates: 150 to 800 USD/ton captured annually

Economic impact of systems performance

Example for a conventional LNG Carrier: Joint Development Project with TotalEnergies, Hyundai Heavy Industries, SK Shipping, Marubeni and DNV.

Source: Investigating Carbon Capture and Storage for an LNG carrier

Onboard systems integration

With an efficient OCC technology and onboard integration, the business case is 5% more commercially attractive than alternatives

OPEX

Regulatory gaps do not allow monetization of all potential OPEX savings (e.g. FuelEU)

Systems utilization

Respecting operating constraints of the vessels

Impact of enhancements

- Reduced steam demand of the carbon capture plant
- Improve power demand of the liquefaction and CO2 treatment plants

Challenges and opportunities per ship segment

The integration of OCC systems necessitates a reassessment of design parameters – stability, strength, visibility, safety, and systems integration for energy efficiency – to ensure safe access, maintenance, and operational integrity

Overview of OCCS factors affecting commercial feasibility analysis

COST FACTORS

- Capital costs
- Fuel penalty
- Operating costs
- Cargo carrying capacity losses
- Carbon discharge cost

SAVINGS

Unknown impact on compliance costs

Regulatory perspective: Unknowns

Wider application of OCC in shipping depends on regulatory acceptance

- Regulatory need: Shipowners need regulations that credit captured carbon dioxide to make it commercially attractive.
- **EU regulations**: EU Emissions Trading System only regulation by now that incentivizes carbon capture on ships.
- IMO's initiative: IMO plan to incorporate OCC in IMO Lifecycle Assessment (LCA) guidelines and is working on a regulatory framework for OCC.
- Uncertainty reduction: Quick regulation development reduces industry uncertainties and supports carbon capture technology development.
- Safety guidelines: Class provides guidelines, rules and notations for safe onboard implementation.

		STATUS	GAPS
Environmental and GHG accounting	EEXI/EEDI & CII	×	For future considerations:Fuel penaltyDesign implicationsEmissions derogation
	Future IMO regulations		Impact on well-to-wake emissions
	EU MRV & ETS	✓	Lacking verifiable method for monitoring
	FuelEU Maritime		Provision of update by 31/12/2027
Waste handling	MARPOL	×	Allowance or banning of effluents to sea
	London Protocol		How onboard captured CO2 will be managed
Safety	SOLAS	×	Offloading proceduresTraining requirementsCertification of components
	Class	✓	

Value chain perspective: Status and expectations on CO2 volumes from shipping

Uptake of OCC closely linked to CCUS value chain developments

Potential storage capacities and CO₂ volumes from shipping

Port	Project
Wilhelmshaven LNG terminal	CO2nnectNow
Gdansk LNG terminal	PL – EU Interconnector
Montoir-de-Bretagne LNG terminal	GOCO2
Dunkirk	D'Artagnan
Zeebrugge	Zeebrugge Multi- molecule Hub
North Sea Port and ArcelorMittal	Ghent Carbon Hub
Antwerp	Antwerp@C CO ₂ Export Hub
Rotterdam	CO2next

CO2 volumes from shipping: Current estimates

ESTIMATES

- Source: DNV Maritime Forecast to 2050, Edition 2024
- Estimated CO2 storage demand from shipping ~80Million tonnes of CO2 per year.

Scenarios on CO2 volumes from shipping

ESTIMATES

- If DNV's 2024 scenarios hold with OCCS technology, 84–315 Mt CO₂ capacity will be required by 2050.
- DNV ETO CCS Outlook Edition 2025 Estimate represents a most likely scenario – not a net zero as for DNV Maritime Forecast, Ed. 2024.
- OCCS to contribute by ~5% of global capacity by 2050.

Other value chain practicalities

Disposal to an intermediate receiving unit, e.g. a LCO2 barge

- **+** Experience from other cryogenic transfers
- Lack of current infrastructure
- ? Documentations for emissions derogation
- ? CO2 specifications for LCO2 receiving segment

Connection to the CCUS value chain nodes

- + Experience from other cryogenic transfers
- Specifications for exchange
- ? Purification technology

Thank you

Chara Georgopoulou

Head Maritime R&D and Advisory Greece

OCCS Expert

Chara.Georgopoulou@dnv.com

www.dnv.com

