

Agenda

- Intro to Seabound
- 2. Technology Overview
- 3. Key Advantages
- 4. Indicative Case Study
- 5. Pilot Projects & Next Steps

Seabound is an award-winning startup developing modular carbon capture systems for the shipping industry.

KEY STATS:

- Founded in late 2021 by serial entrepreneur, ex-SpaceX engineers, PhD chemical engineers
- 20-person team, based in London
- \$10M raised to date between equity & grants
- 2 world-first pilot projects completed

AWARDED:

BACKED BY:

Collab Fund

FEATURED IN:

We **reviewed all types** of carbon capture technologies to find the best fit for shipping — **selecting 2nd-generation calcium looping**.

"Seabound Containers" are modular carbon capture systems filled with lime that absorb CO₂ and convert it into limestone.

Seabound Containers connect to a ship's exhaust with minimal retrofits. At port, saturated containers are swapped for fresh ones — just like regular cargo.

Seabound **uniquely decouples** the carbon capture process between ships and shore to **reduce cost and complexity**.

SEABOUND

First principles thinking: Designed specifically for maritime constraints; decouple onboard and onshore parts, leverage 2nd gen tech (lime).

Low CAPEX, low onboard energy, just offload limestone.

ALTERNATIVES

Conventional thinking: Miniaturize and transfer full carbon capture process (steps 1-3) from land to ships, using 1st gen tech (amines).

High CAPEX, high onboard energy consumption, limited scalability as ports can't receive pure CO₂.

Onshore, limestone is sold as a building material in Seabound's "open loop" operating model.

Alternatively, limestone can be recycled to reuse the lime and sell/sequester pure CO₂ in Seabound's "closed loop" model.

Seabound Containers follow **standard TEU conventions** for **maximum simplicity and scalability**.

KEY INNOVATIONS:

- Miniaturized and modularized calcium looping system
- Decoupled process between onboard & onshore components
- Patent-pending design
- Proprietary lime/sorbent recipe
- Automated optimized operations

Seabound Containers follow **standard TEU conventions** for **maximum simplicity and scalability**.

Seabound's key advantages are **low CAPEX**, **low onboard energy consumption**, and **low infrastructure requirements**.

1

LOW CAPEX

- Decoupled process and modular design minimize equipment needs onboard and simplify vessel retrofit
- Scale capture with regulation and swap Seabound systems across vessels investing in fleets vs ships

2

LOW ONBOARD ENERGY CONSUMPTION

- Onboard reaction is exothermic, reducing energy demand to <10 kWh/ton CO₂
- Future waste heat recovery possible to repurpose thermal energy onboard

3

LOW INFRASTRUCTURE REQUIREMENTS

- Limestone is a safe, non-toxic material that can be easily offloaded in ports worldwide
- No specialized tanks required onboard nor new infrastructure required in ports; Seabound Containers can be fitted onto various vessel types and lifted on/off vessels using standard port cranes

Case study:

Key Inputs/Assumptions:

- Panamax vessel; 5000 TEU
- ~43 metric tonnes of HFO per day
- Intra-EU voyage; 7 day route
- 2028 operations
- Vessel avoids IMO and EU penalties

Case study: To **meet IMO's base threshold**, a Panamax ship needs **20 Seabound Containers**, paying back in **<4 years**.

Key Inputs/Assumptions:

- Panamax vessel; 5000 TEU
- ~43 metric tonnes of HFO per day
- Intra-EU voyage; 7 day route
- 2028 operations
- Vessel avoids IMO and EU penalties

Capture Rate

7-18%

of CO₂ emissions

Seabound Containers

<20

Onboard

Space Needs

< 0.5%

of TEU capacity

Payback Period

3.75

years

By 2031, a Panamax ship could capture **40% of CO₂** emissions with **~40 Seabound Containers** and a **<2 year payback.**

Key Inputs/Assumptions:

- Panamax vessel; 5000 TEU
- ~43 metric tonnes of HFO per day
- Intra-EU voyage; 7 day route
- 2031 operations
- Vessel avoids IMO and EU penalties and earns surplus units

Capture Rate

40%

of CO₂ emissions

Seabound Containers

43

Onboard

Space Needs

<1%

of TEU capacity

Payback Period

1.81

years

Seabound's world-first pilot with Lomar and Hapag-Lloyd captured CO₂ at ~80% efficiency.

British Start-up Completes Sea Trial of Onboard Carbon Capture System

Seabound demonstrates carbon capture technology at sea for first time

The UK start-up worked with Lomar's corporate venture lab iomarlabs on the project, which took place in 2023.

Environment

A container ship just tested a system to capture its own CO2 emissions

Shipping companies are experimenting with onboard carbon capture systems, but they face difficult trade-offs on energy and space for regular cargo

Seabound's second pilot – the world's first port-based CO₂ capture – achieved 94% efficiency, unlocking a new application.

Next up, we're launching our **first commercial demonstration** with Hartmann Group and Heidelberg Materials in Norway.

