

TECHNICAL SEMINAR on Onboard Carbon Capture and Storage(OCCS) Systems

Developing Total Solutions for OCCS

Insights from "Real-Ship Projects" in Safety, Operation, and Regulation

TABLE OF CONTENTS

Chapter 1

Introduction

Chapter 2

Real-Ship Application Overview

Chapter 3

Design Optimization and Efficiency Considerations

Chapter 4

Regulatory Gaps and Class Experience

Chapter 5

Conclusion

Chapter

Introduction

• Why OCCS, its Opportunities and Challenges

OCCS is an immediate solution to achieve Net Zero by 2050

- 1 To adopt OCCS to vessels to meet Net Zero by 2050, especially for existing fleets is inevitable
- 2 However, in the process of applying it to actual ships, there are various technical, operational, and regulatory hurdles.

Safety

- Large CO₂ storage in non-gas carrier
- Amine
- Refrigerant

Training

- Unfamiliar to seafarers
- Assistance from shore-based experts is required.

Value chain

• No experience for unloading and utilization.

Efficiency

• Energy is consumed during carbon capture and liquefaction.

Space

• Equipment consumes space and adds weight, resulting in a reduction of cargo capacity.

Chapter

Real-Ship Application Overview

- Brief on real-ship demonstration consortium : Korean Register, PANASIA, Samsung Heavy Industries, HMM
- Vessel Information
- OCCS Flow Diagram & Specification

Consortium for Onboard Carbon Capture System

Teaming up to reduce the GHG in short term

Classification

Survey & Research

- Drawing approval
- Risk assessment
- Safety rule development

Container Ship Operation

- Ship owner
- Captured CO₂ unloading

Ship Owner

Equipment Maker

OCCS Supplier & Retrofit

- Carbon capture system supplier
- Retrofit engineering

Liquefaction Facility

- · Liquefaction system supplier
- Captured CO₂ utilizing

Ship Builder

Fundamental Design check-up points

SHIP'S PARTICULAR

Vessel Name/Flag	HMM MONGLA/ J EJ U, KOREA
Vessel Type	Container Vessel
Vessel Capacity	2,200 TEU
Fuel Type	HFO (With SOx-Scrubber)
1-Cycle Voyage Period	270 days voyage/year
Fuel Consumption	29.7ton per day
Vessel CO ₂ Emission Per Year	24,977 Ton.CO ₂ /year

Item	Spec.
Electrical power	6650 kW
Composite boiler	1.6t(Exh.)/1.8t(O.F)
F.W Gen.	25 t/day

OCCS Flow Diagram & Specification

1 Pre-treatment of Flue Gas

Flue gas is cooled, and particles and sulfur oxides are removed. It is then pressurized and sent to the absorber.

2 CO₂ Absorption

The cooled gas contacts a chemical solvent in the absorber, selectively capturing CO₂.

3 Regeneration

The solvent is heated by a reboiler to release the captured CO₂ and regenerate it for reuse.

4 Liquefaction & Storage

CO₂ is liquefied through compression and cooling, allowing safe marine storage and efficient onshore off-loading.

OCCS Specification

Items	Value
Feed Flue gas volume	14,000Nm ³ /h
Capture level	90%
Captured CO ₂	1,039kg/h
Product LCO ₂	1,018kg.LCO ₂ /h
Purity of product LCO ₂	99.9%
Solvent flowrate	11.3ton/h
Additional fuel for OCCS	123kg/h
Waste heat usage	15% of heat energy
Captured CO ₂	6,596ton/year

Key Features

Improved energy efficiency

Design Optimization and Efficiency Considerations

- Feasibility Study
- Technical Challenges
 - OCCS Optimization Space & Energy
 - LCO₂ storage design
 - Supporting Crews
- Voyage Summary of HMM MONGLA during Past 1 Year
- Off loading LCO₂

The system has been applied to various vessel types, including bulk carriers, tankers, and gas carriers, with supported capacities ranging from 0.5 to 8 tons per hour.

1. Technical Challenges I OCCS Optimization – Space & Energy

Adding OCCS into optimized designed vessel is a challenge. However, one tower solution and Reboiler for Amine delivers a Optimized solution in efficiency

2. Technical Challenges I LCO₂ storage design

Unit

bar(a)

°C

 kg/m^3

Design of LCO₂ Storage is various and requires the common standard

3. Technical Challenges I Supporting Crews

Real-ship OCCS project was designed not only perform its functionality but beyond through on-line support

☑ Minimize extra work for crews

new system to crews can cause extra workload to operate

☑ Safety of crews and ships

simultaneously monitor the system from the ship and manufacturer.

Providing a guide

Immediate support can be provided when necessary.

Voyage Summary of HMM MONGLA during Past 1 Year

LCO2 offloaded at the port and brought to produce Green Methanol

No.	Date	Route	Detail Performance
1	Jul 12 – Aug 4, 2024	MOK- NGB- SHA- CGP	Initial setup, installation inspection
2	Sep 12 – Oct 19, 2024	SIN – NGB CGP – PKL - SIN	Testing capture system
3	Oct 19 – Nov 22, 2024	SIN – NGB CGP - SING	Testing liquefaction system
4	Nov 22 – Nov 30, 2024	SIN – NGB	Operating full OCCS and LCO ₂ storage
5	Dec 31, 2024 – Jan 6, 2025	SIN – NGB	Off-loading (17/16Ton)
6	Feb 1 – Feb 9, 2025	SIN – NGB	OCCS Notation
7	Apr 16 – Apr 24, 2025	SIN – NGB	Operating full OCCS and LCO ₂ storage
8	May 19 – May 25, 2025	SIN – NGB	Off-loading (15/10Ton)
9	Jul 22 – Jul 3, 2025	SIN – NGB	Maintenance

PROPERTY

Carbon Dioxide

Water by Dew Point

METHOD

GB/T1886.228-2016

GB/7 5832.2-2016

RESULT UNITS

>99.9% (V/V)

2.14ppm (v/v)

MIN

Off loading LCO₂

Real-ship results, optimized design, and regulatory compliance combine to complete the total solution.

Chapter

Regulatory Gaps and Class Experience

• Regulatory Gaps and Class Experience

HAZID STUDY

HAZID STUDY - Identifying 5 major is sues among 252 issues

Category	Identified Issue	Measures
Solvent	Leakage	 Use of class II pipes with appropriate material Installation of drip tray liquid detector Forced ventilation fan in handling space ESD valve for solvent storage area
	Freezing	- Drain lines for winter season - Heater in solvent storage area
	Personal Accident	- Personal protective equipment (PPE)- Emergency shower and eyewash
CO_2	Leakage	 Forced ventilation fan in handling space CO₂ detector Installation of vent mast
	Engine Room Ingress	- Separated area from engine room and accommodation
	Freezing	- Pressure control logic and alarm - Set-up procedure for tank connection
	Over-Pressure	- Maximum storage day calculation for BOG
Refrigerant	Leakage	- Forced ventilation fan in handling space - Refrigerant detector
Fire	Solvent	- Fire extinguisher (Non-flammability)
	Equipment	- Install fire detectors
	Refrigerant	- Install fixed fire extinguishing system and extinguisher
	Tank	- Water spray for CO ₂ tank
Fresh Water Consumption	F.W Shortage	- Apply additional fresh water generator

HAZID STUDY - CO₂ Leakage

HAZID STUDY - Liquified CO₂ Tank

Safety is sues and Measures 1 Near miss In Operation

Amine Solvent Leakage

.

CO2 Leakage

Future Improvements

Minimizing Leakage of Solvent &CO₂

Minimizing flanged connection

Minimizing instruments

Optimizing piping routes

ROK's Past Activities and Future Plans at the IMO

Chapter

Conclusion

Conclusion – Optimized Resolution

Through this Project, We aim to develop safe and efficient OCCS to achieve decarbonization.

Safety

- Through HAZID study, Safety Rule developed
- Real time monitoring provide safety.

Training

• Land base support can make crew less burdened

Value Chain

 Unloaded CO2 and Utilized it as Methanol

Efficiency

• High efficiency Carbon Capture with waste heat recovery.

Space

Minimize the required space for OCCS.

"True progress in decarbonization comes from innovation, collaboration, and shared responsibility."

Thanks for your attention

Ohg Youngju

General Manager

yc.ohg@worldpanasia.com marketing@worldpanasia.com

Kim Joonghun

Senior Surveyor

kimjhas @ krs.co.kr kimjhas @ naver.com