ONSHORE-TO-ONBOARD DECARBONIZATION

TARGETTING EMISSIONS
REDUCTIONS IN CONVENTIONAL
MARINE SYSTEM

CO₂

Dr. Hassan El-Houjeiri Principal Fellow

Technical Seminar on OCCS

IMO Headquater, 11 September 2025

BUNKER FUEL SUPPLY CHAIN

- Bunker fuel used by ships sourced from crude oil via several upstream sources
- Upstream operations include extraction, separation, and transport
- Refineries process crude oil into various petroleum products, including bunker fuel
- Fuel transported to ports for storage and eventual refueling of vessels

GLOBAL VARIABILITY IN BUNKER FUEL CARBON INTENSITY

- Wide spread in WtT CI across ports: ~16 to ~147 kgCO₂e/bbl (~4 to 26% of WtW CI)
- **Drivers of upstream variability** (flaring, venting, extraction methods)
- Refinery configurations (energy intensity, hydrogen use)
- **Blendstock components** (fuel oil vs distillates)

- Implication: OCC operates on top of highly uneven upstream carbon baselines
- **Technology:** Meaningful decarbonization requires progress in both upstream supply chains and onboard operations
- **Policy:** WtT variability should be reflected in assessments to ensure fair and impact-based comparisons

~9x difference

Ras Tanura vs Nanjing illustrates why supply chain decarbonization is crucial

WHY ROUTE-SPECIFIC OCC ANALYSIS?

Voyage profiles differ

ballast/loaded distances, CO2 baselines, cargo

Freight economics

drive break-even feasibility

Engineering footprint

(tanks/modules) depends on route

OCC MODEL & SCENARIO DESIGN

Datasets(1)

- Vessel name/ID
- Vessel type
- Ports
- Cargo
- **DWT**(2)
- Ballast/loaded distances
- **Estimated CO2** emissions (per leg)
- Voyage duration—derived (12 knots average speed)
- (1) Source: kpler
- (2) DWT = Dead Weight Tonnage

Costs

- Cargo penalty—derived
- CAPEX (6.85 M\$, 2.3 tph,
 CCF(3)=0.094)
- Nonfuel OPEX 19.6 and 38.2
 \$/t and offloading 15 and 34.5
 \$/t at a capture rate of 1.0 and 2.3 tph, respectively
- Total cost = cargo penalty +
 CAPEX + OPEX + offloading

(3) CCF = Capital Charge Factor

Scenarios

- **Capture rate η** (0.5-0.9)
- **Fuel penalty** *f* (0.015-0.15)
- **Penalty exhaust φ** (bypass vs integrated)
- Full vs loaded-leg penalty
- Freight rate \$/t cargo (25-50)
- Mass-balance mode (captured vs net)
- **Sizing policy** (per-voyage vs per-vessel peak)

5 Charts per Scenario

- Cargo penalty vs Capture rate
- BE (cargo) vs Freight
- BE (total cost) vs Freight
- Technology cost breakdown
- Tank/Modules vs Capture rate

TARGET SCENARIO ($\phi=1, f=0.015, \eta=0.9$)

- China→AMS (long-haul) shows a
 much steeper curve than KSA→Asia
- At η=0.9 the loss is ~34% for
 China→AMS vs ~8% for KSA→Asia

- Break-even CO₂ price rises with freight rate
- China→AMS shows lower BE than
 KSA→Asia, despite higher cargo
 penalty, because CO₂ avoided per
 voyage is larger

- Break-even CO₂ price climb once CAPEX and OPEX are included
- Long-haul China→AMS needs highest CO₂
 price, driven by OCC scale
- Medium-haul KSA→Asia more viable short term, as shorter voyages spread cost more effectively

COST BREAKDOWN & SIZING

- CAPEX dominates the route gap: ~\$82/t China→AMS vs ~\$65/t
 KSA→Asia (per tCO₂ avoided)
- Non-fuel OPEX and offloading match (~\$39/t and ~\$35/t each): ratebased from MARAD, normalized per avoided
- Target offloading cost cuts by increasing transfer rates (bigger/faster arms, parallel manifolds) so berth time drop

- Long haul installs more equipment at every η (η=0.9 averages):
 modules ~11 vs 8, tanks ~10 vs 5 (China→AMS vs KSA→Asia). This drives the higher CAPEX per tCO₂ avoided on the long route
- Gap widens with higher η : more capture \rightarrow more throughput \rightarrow more module/tank replications on long-haul

COMPARATIVE INSIGHTS & TAKEAWAYS

KSA→Asia

China→**AMS**

Cargo penalty

lower (~4-8%)

Cargo penalty

higher (~18-34%)

CAPEX + Offloading dominate

CAPEX (higher)

dominates

Smaller tank/module sizing

Larger tank/module

sizing

Policy levers:

CAPEX support (carbon pricing/ crediting, CfD(1))

Standardized offloading frameworks

Designate more voyages to OCC-equipped vessels (like HOV lanes)

Deployment scale and standardization

NEXT STEPS IN OUR STUDY

Global Expansion of Model Application

Extend OCC cost model to cover all primary bulk carrier routes worldwide. Incorporate container ships and other major ship classes.

CCS Hubs Integration

Connecting ports with major CO2 storage sites to create a scalable, efficient, and cost reducing pathway that transforms OCC into part of a coordinated global decarbonization system.

Development of OCC Suitability Index

Create Vessel-Route OCC suitability index at a global scale. Publish results with cost scenarios in a peer-reviewed journal.

KAPSARC Well-to-Wake Model

Interactive public tool for onshore & onboard emissions baselining. Enable comparative decarbonization analysis, including OCC.